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configurational properties on the degree of polymerization 

N C Smith and R J Fleming 
Department of Physics, Monash University, Clayton, Victoria 3168, Australia 
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Abstract. Using the inversely restricted sampling techniques described in the previous 
paper, three-dimensional continuum model chains up to lo00 links in length have been 
generated, with both freely varying and fixed bond angles. An analysis of their configura- 
tional properties leads to the following conclusions. 

(i) The geometric expansion of intermediate length (< 100 links) chains due to excluded 
volume effects increases monotonically with the volume of the spheres representing the 
individual monomer units of the chain. 

(ii) The expansion factor a*(N)  = ( R i ) / ( R i ) o ,  where ( R i ) ,  is the mean square end- 
to-end length of N-link chains at zero excluded volume, does not consistently follow (for 
N < 100 and c' < 1.0) any of the published two-parameter curves, eg those of Flory and 
Fisk. U is the excluded volume ratio. 

(iii) The ratio ( S ~ o o ) / ( R ~ o o ) ,  where (Sfoo) is the mean square radius of gyration of 
100-link chains, decreases slowly from 0.167 at zero excluded volume to about 0.157 for 
U 2 0.6, these values being very close to those published for on-lattice chains. 

(iv) The distribution function W(R)  of the probability that the end-to-end length of a 
chain will be R can be expressed as W(R)dR = K R 2  exp[-(R/o)'] dR where K and o are 
constants, the latter being directly proportional to the mean square end-to-end length of 
the chain, and t is a parameter which increases monotonically with increasing excluded 
volume from a value of 2.0 at zero excluded volume. 

1. Introduction 

In the previous paper (Smith and Fleming 1975, to be referred to as I) we described the 
use of inversely restricted sampling techniques in computer generation of model polymer 
chains subject to excluded volume restraints, but not, as in most other Monte Carlo 
studies, constrained to lie on a regular crystalline lattice. The purpose of this paper is 
to present the results of our calculations of the dependence of the configurational 
properties of such chains on the degree of polymerization, ie on the number of links N 
in the chains. In 9 2 we discuss the dependence of the mean square end-to-end length 
( R i )  and the mean square radius of gyration ( S i )  of N-link chains on N ,  and the 
behaviour of the ratio ( S i ) / (  R i ) ,  up to N = 100. Relative weighting problems inherent 
in the inversely restricted sampling technique prevented the acquisition of reliable data 
on ( R i )  and ( S i )  for N > 100. Section 3 is devoted mainly to a comparison of the 
long- and short-range effects of excluded volume in longer chains, and in 0 4 we deduce 
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a possible form for the distribution function of the chain end-to-end length. General 
discussion of the results follows in 0 5, and the overall conclusions drawn from this 
study are stated in Q 6. 

2. Simple geometric properties of 100-link chains 

( R i )  was computed from the equation 

where p i  is the multiplicity (see I) of the ith chain of a sample containing m chains. A 
similar equation holds for ( S i ) .  

The ( R i )  results for 100-link chains are presented in figures 1 and 2 for three values 
of the excluded volume ratio U defined in I. The dots represent the computer-generated 
or ‘experimental’ values of ( R i ) ,  while the continuous lines represent least-squares 
fits of these values to the relationship 

( R i )  = a”. (1) 

These fits were obtained by two distinct methods, firstly by the obvious linearization 

N 

Figure 1. Dots: computer-generated ( R i )  data 
for freely varying bond angles. Full curves: least- 
squares fits of ( R i )  = aNY to thecomputer-generated 
data. See table 1 for a and y values. 

t 
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N 

Figure 2. Dots: computer-generated ( R i )  data 
for fixed bond angles. Full curves: least-squares fits 
of ( R i )  = aNY to the computer-generated data. See 
table 1 for a and y values. 
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of equation (1) yielding 

In ( R i )  = In a + y In N ,  

and, secondly, using a computer program (Burroughs 1964) which minimizes the 
relative error 

(( R i  ) e x p  - ( R i  >calc)2 / (  R?! >,,, 
through the first and second partial derivatives of the function aNY.  The relative error 
was minimized, rather than the error, in order to avoid giving undue weight to the data 
for large N .  The y values derived from these two methods agreed with each other to 
the third decimal place. The excluded volume ratio u was varied in steps of 0.1 from 
0.2 to 1.0 inclusive, 2000 chains being generated at u = 0.2, 0.4, etc, and 1000 chains 
at u = 0.3, 0.5, etc. All the fixed bond angle results were obtained from 1000-chain 
samples, for u-increments of 0.2, since ( R i )  varies more slowly with U in this case. 
The values of a and y are presented in table 1, the fourth column being the average 
percentage difference between the computer-generated ( R i )  and the values calculated 
from equation (1) using the quoted a and y values. These percentage differences are 
presented in order to give an alternative indication of the accuracy of the fit of equation 
(1) to the data. The fractional error in the mean value of the computer-generated 
( R i ) ,  defined as the ratio (standard error in ( R i ) ) / ( R i ) ,  remained approximately 
constant for N > 20 in both bond angle models. This result suggests that a given 
number of chain samples yields the same accuracy for all chain lengths, there being 
no discernible effect of the decrease in statistical weight with increasing length due to 
use of the inversely restricted sampling technique. 

It will be seen that: (i) the 7 values for fixed bond angle chains are consistently 
larger, at the same u values, than those for freely varying bond angle chains; (ii) there 

Table 1. Values of a and y in ( R : )  = aNY,  for various values of U. 

Excluded volume ratio v y a E( %) 

Freely varying 
bond angles 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

1.026 
1.089 
1.092 
1.165 
1.186 
1.173 
1.193 
1.243 
1,208 

0.973 
0.898 
0.967 
0.928 
0.936 
1.105 
1.139 
1.076 
1.210 

1.77 
2.48 
1.66 
2.17 
1.57 
2.07 
1.56 
2.07 
1.55 

Fixed bond angles 

0.2 
0.4 
0.6 
0.8 
1 .o 

1.100 1,384 2.40 
1,141 1.326 2.22 
1,193 1.234 2.14 
1,230 1.208 2.01 
1.255 1.160 1.98 
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is generally a steady increase in y with increasing v for both models. (The data for 
U = 0.9 in the freely varying bond angle case are thought to be non-representative.) 
However, the relatively small number of samples limits the accuracy of the results. 
More importantly, the quoted y values may simply be effective exponents at low N ,  
the true asymptotic behaviour being attained only at much higher N .  This point is 
taken up in 0 3. 

The variation of ( S i )  with N is shown in figures 3 and 4. Writing 

( S i )  = a’NY’, 

the corresponding least-squares data appear in table 2. Figures 3 and 4 are noticeably 
smoother than figures 1 and 2, as might be expected, since the values of S i  for a particular 
chain are derived from the configuration of the whole chain, rather than from its end- 
points alone. The observations (i) and (ii) for ( R i )  appearing in the preceding para- 
graph are clearly valid for ( S i ) .  The 7’ values are consistently smaller than the corres- 
ponding y values, contrasting with lattice-constrained chains for which y’ = y. How- 
ever, it may be that y’, like y, has not reached its asymptotic values at N = 100. Even 
in a chain with no excluded volume constraints ( S i )  tends to its asymptotic behaviour 
much more slowly than ( R i ) ;  perhaps excluded volume effects further slow this 
approach. The result y’ = 0.966 at U = 0.2 in the freely varying bond angle case 
certainly supports this suggestion, since the asymptotic value of y’ is unity for zero 
excluded volume. 

The variation of the ratio ( S ~ , , o ) / ( R ~ o , , )  with U is shown in table 3. Clearly, since 
y‘ is always less than y, as stated above for 100-link chains, this ratio must decrease 
steadily with increasing N .  However, beyond U = 0-6 it does not appear to vary in any 
consistent fashion with increasing v ,  the average value being 0-1 57 for both geometries. 

N 

Figure 3. Dots: computer-generated ( S i )  data 
for freely varying bond angles. Full curves: least- 
squares fits of (Si )  = a’NY’tothecomputer-generated 
data. See table 2 for a‘ and y’ values. 

N 

Figure 4. Dots: computer-generated (St) data 
for fixed bond angles. Full curves: least-squares fits 
of ( S i )  = a’NY’ to the computer-generated data. See 
table 2 for a‘ and y’ values. 
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Table 2. Values of a' and y' in ( S i )  = a'NY', for various values of U. 

Excluded volume ratio U y' a' E( %) 
~~ ~ ~~~ 

Freely varying 
bond angles 

0.2 
0.4 
0.6 
0.8 
1 .O 

0.966 0.207 1.53 
1.025 0.202 1.42 
1.118 0.188 1.33 
1,122 0.217 1.29 
1.159 0.223 1.30 

Fixed bond angles 

0.2 1.067 0.258 1.39 
0.4 1.114 0.238 1.36 
0.6 1.156 0.226 1.31 
0.8 1.202 0.213 1.25 
1 .o 1.242 0.195 1.24 

Table 3. Variation of the ratio (Sfoo)/(Rfoo) with U. 

Excluded volume ratio U ( S i o o ) / ( R ~ o o )  for freely ( S ~ o o ) / ( R ~ , , o )  for 
varying bond angles fixed bond angles 

0.0 (unrestricted 0.168 
random walk) 

0.2 0.162 
0.4 0.162 
0.6 0.1 55 
0.8 0.160 
1 .o 0.157 

0.166 

0,160 
0,158 
0,158 
0.155 
0,158 

The same or very similar figures have been reported by several authors for lattice- 
constrained chains, eg Wall and Erpenbeck (1959) obtained 0.1 57 for 600-link chains 
on a tetrahedral lattice, Gallacher and Windwer (1966) obtained 0.1 57 for 200-link 
branched chains after an induction length of about 75 links, and Windwer (1965) ob- 
tained 0.158 for 96-link chains on a variable lattice. The latter author concluded that 
the ratio was independent of model, and the present results would appear to support him. 

In order to check the reliability of the inversely restricted sampling data, 120-link 
chains were generated, with both freely varying and fixed bond angles, at U = 0.2, any 
chain being discarded immediately it violated the excluded volume conditions. The 
results should be free of systematic statistical bias, their accuracy being limited only 
by the sample size. (More than 10000 chains of 120 links were generated for each 
geometry.) The ( R i )  and ( S i )  values agreed with the inversely restricted sampling 
data to well within the expected error set by the rather small sample size in the latter 
case. We may therefore have confidence in the reliability of the inversely restricted 
sampling data at higher values of U. 

As an alternative method of analysis of the expansion of the chains due to excluded 
volume effects, the data were compared with the predictions of the perturbation theory 
formulation of the excluded volume problem, based on the use of pseudopotentials 
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(Zimm 1946). This formulation is applicable to both lattice and continuum models 
and yields 

a2(z) = - (R3 - - 1 + A , z + A , z 2 + A 3 z 3 +  . . . 
(R30 

where (R;) ,  is the mean square end-to-end length of an N-link chain with zero 
excluded volume, and 

b being the link length and the binary cluster integral. /3 represents the effective 
excluded volume. The above expansion is valid only for N + CO, /3 + 0, BN'/* finite, 
and is usually called the two-parameter approximation. According to Yamakawa 
(1971) it can be used up to z = 0.15; the same author quotes values for A , ,  A ,  and A , ,  
the only coefficients known exactly. Many authors (Flory 1949, Flory and Fisk 1966, 
Yamakawa and Tanaka 1967, Alexandrowicz 1967, 1968, Kurata 1968) have provided 
closed-form alternatives to equation (2) which are supposed to be valid over the entire 
range of z,  although still subject to the condition N >> 1. Recently, Domb et al (1973) 
have derived numerical estimates of a2(z)  which are expected to remain valid for all N. 
There is very little difference between these various approximations at small z, but the 
discrepancies become very marked as z increases (Alexandrowicz and Accad 1973). 

In figure 5 we compare the Monte Carlo values (the set in which a chain was dis- 
carded immediately it violated the excluded volume conditions) of a2(z) for chains 

Figure 5. Expansion factor a2(z) for chains with freely varying bond angles, U = 0.2. Full 
curve : Monte Carlo data; chain curve: Alexandrowin (1968) two-parameter approxima- 
tion. 
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The excluded volume parameter p was taken as four times the volume of the sphere 
representing a repeat unit of the chain (Fowler and Guggenheim 1939); ( R i ) ,  was 
equated to N .  It will be seen that, except at very low z, the Monte Carlo a2(z) values 
are consistently larger than those predicted by the two-parameter approximation. 
Since the Monte Carlo values were obtained by averaging over more than 10 000 chains, 
it is very unlikely that the difference can be completely accounted for on statistical 
grounds. Of course the two-parameter theory holds formally only for large N ;  how- 
ever the a2(z) values of Domb er al (1973), which as stated earlier are expected to  be 
valid for all N ,  differ only very slightly from those of Alexandrowicz at small N .  Since 
the calculations of Domb, Barrett and Lax were performed specifically for a Gaussian 
distribution of bond lengths, a large number of chains with such a distribution were 
generated, using the Monte Carlo technique, in order that a meaningful comparison 
could be made. The resulting a2(z) values followed those for a constant bond length 
very closely. 

Similar comparisons for U = 0.5 and 1.0 are shown in figures 6 and 7 respectively, 
using the inversely restricted sampling Monte Carlo data. Of the various two-parameter 
approximations for a2(z), that of Alexandrowicz (1968) gives the largest values, and that 
of Flory and Fisk (1966) the smallest. It will be seen that the Monte Carlo data do not 
consistently follow either ; the same is true for the other approximations. 

It would thus appear very unlikely that, for N < 100, any of the two-parameter 
a2(z) approximations will accurately represent the expansion of chains with freely 
varying bond angles constructed in the continuum, over the range of U up to  1.0. It is 
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Figure 6. Expansion factor az(z)  for chains with Figure 7. Expansion factor a2(z)  for chains with 
freely varying bond angles, U = 0.5. Full curve: freely varying bond angles, U = 1.0. Full curve: 
Monte Carlo data; chain curve: Alexandrowicz Monte Carlo data; chain curve: Alexandrowicz 
(1968) two-parameter approximation; broken curve: (1968) two-parameter approximation ; broken curve : 
Flory and Fisk (1966) two-parameter approximation. Flory and Fisk (1966) two-parameter approximation. 
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particularly noteworthy that the virial expansion for a2(z) at low z (equation (2)) also 
fails. It may be that the total excluded volume is not simply four times the volume of 
the sphere representing the repeat unit of the chain (the intrinsic excluded volume), 
but contains an additional as yet unknown component due to the extrinsic excluded 
volume (see Q 3). The situation in the fixed bond angle case is even more complex, and 
therefore no analysis of a2(z) was attempted for that geometry. 

3. Short- and long-range effects of excluded volume in longer chains: inversely restricted 
sampling technique 

Unfortunately, attempts to obtain data on ( R i )  and ( S i )  for N > 100, using the in- 
versely restricted sampling technique, proved unsuccessful. Two thousand 500-link 
chains with freely varying bond angles and U = 0.5, and one thousand chains with 
U = 1.0, were constructed. The variation of ( R i )  with N for U = 0.5 becomes erratic 
beyond N = 160 approximately. This erratic behaviour occurs at lower N for greater U ,  
eg N = 110 at U = 1.0, and is due to a deficiency inherent in the inversely restricted 
sampling technique, as pointed out by Rosenbluth and Rosenbluth (1955). The range 
in magnitude of the statistical weights of the chains increases rapidly with N ,  since the 
weight of each N-link configuration is computed as a n-product of N fractions. Thus 
at large N the cumulative effect of small differences in individual link weights can be 
very large. Figure 8 is a histogram of the weights found in five hundred 500-link chains 
with freely varying bond angles at U = 0.5, and shows that a large variation in weights 
does occur in practice. The long tail of low-weight chains will not significantly affect 
the average values of ( R i )  and ( S i ) ;  these parameters are therefore dominated by 
the relatively few chains with high weights found at the other end of the distribution, 
and hence the calculated average values could be considerably in error. However, 
analysis of the two thousand chain sample up to N = 500, with normal weighting, 
yielded y = 1.15, a = 1.01, in reasonable agreement with the corresponding figures 
shown in table 1, despite the small effective number of samples. 

Clearly, very large numbers of chains would have to be generated, especially at 
high values of U, in order to obtain sufficient high-weight chains so that statistically 
reliable ( R i )  and ( S i )  data could be extracted, say up to N = 200. The enormous 
amount of computing time required to accomplish this was not available, and there- 
fore an attempt to obtain this information, using the sample enrichment technique of 
Wall and Erpenbeck (1959), was made. 

1g weight 

Figure 8. Histogram of the number of weights of each order found in a sample of five hundred 
500-link chains with freely varying bond angles, at U = 0.5. 
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3.1. Sample Enrichment Technique 

It has been found (Wall et a1 1954, 1955, 1957) that, for on-lattice model chains, if C, 
and C,,, are the number of t-link and (t+s)-link chains respectively, then 

C,,, = C,exp(-As) (3) 

where 1 is the attrition constant characteristic of the particular lattice. Thus by using a 
short s-link chain p times as a stem to which are added a further s links, where p ‘v exp(As), 
p and s being of necessity integers, one can largely overcome loss of samples through 
violation of the excluded volume conditions. Ideally p should be slightly less than 
exfils) in order to avoid population ‘explosion’. Equation (3) was found to hold fairly 
accurately for freely varying bond angle chains, and 1 was evaluated as 0.149 at v = 0.5 
by generating large numbers of short chains (up to 20 links) and discarding any chain 
immediately it violated the excluded volume conditions. Thus s = 14 and p = 8. 
Two thousand nine hundred 504-link chains were then generated using the sample 
enrichment technique with these parameters, each chain having thirty-six 14-link 
sections. The resulting variation of ( R i )  with N is shown in figure 9, the corresponding 
values of a and y being 0.95 & 0.1 8 and 1.165 k 0.003 respectively. These values agree 
well with those shown in table 1, suggesting that, as far as the exponent y is concerned, 
chains with freely varying bond angles and U = 0.5 have attained asymptotic behaviour 
at N = 100. However, this result must be treated with some reservation, since slight 
population occurred, indicating an overestimate of A. This overestimate probably 
arose from the use of too short ( N  < 20) or too few chains in the estimation process. 

N 

Figure 9. ( R : )  against N for 504-link chains with freely varying bond angles and v = 0.5, 
generated using the sample enrichment technique of Wall and Erpenbeck. 
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Hence there may be too much resemblance between ‘families’ of chains, because of 
their common stems, and the results may therefore be unduly biased (Domb 1963). 

The sample enrichment technique was not pursued further since, even at U = 0.5, 
sixteen hours of computer time were required to generate the two thousand nine hundred 
chains to which figure 9 relates. This time would increase, of course, for higher U. The 
total time requirement is even greater, since, for each value of U ,  large numbers of short 
chains must be generated in order to estimate the attrition constant A sufficiently 
accurately. 

3.2. Attrition constants and percentage excluded locus 

Fortunately, in the course of analysis of the statistical weights of chains generated 
using the inversely restricted sampling technique, a trend was observed which suggested 
an alternative though less direct approach to the problem. This approach appears to 
avoid the necessity of generating very large numbers of high-weight chains. 

Figure 10 shows the variation with N of the logarithm of the maximum, minimum, 
and mean weights of the sample of five hundred 500-link chains to which figure 8 refers. 

-40 
I I 1 1 

0 2 4 X I 0 2  

N 

Figure 10. Variation with N of the logarithm of the maximum (A), minimum (B), and 
mean (C) weights of the same chain sample as figure 8. 

Defining lg (weight) as the order of the weight, then it will be seen that, apart from slight 
curvature at very low N, the mean of the order of the weights MN (shown as full circles 
in figure 11) is approximately proportional to N, that is 

where C is the number of chains in the sample, g is a constant and WNk is the weight of 
the kth N-link chain in the sample: 

N 

wNk = n s i k .  
i =  1 

Si, is the proportion of the locus of the centre of the ( i +  1)th monomer in the kth chain 
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which is not excluded. Then 

Since MN is proportional to N at large N ,  

Hence 

N 
m + l  

Re-grouping the products 

lg([S11S12 .**S1oI[S21S22 . . .S ,CI .* .  [Sm1Sm2 *..SmcI)lic 
m 

lg([s11~12.. . ~ 1 c 1 [ ~ 2 1 ~ 2 2 .  . . s 2 C 1  * * .  [Sm+1.1Sm+l.2. * * S m + 1 , C I ) ’ ” ,  

xy= 1 lg[(S,1S,, . . . SiC)”C] cyl’ lg[(Si,si, . . . 

N 
m + l  

Hence 

1: 
m m + l  

If this is to be true for all m, then 
1 ic lg[(Sm1Sm2 . . . Smc)”cI ‘V M(Sm+ 1,1Sm+ 1,2  . . . S m +  1 , ~ )  1 

or 
Ig[(SNlSN2 . . . SNC)’/‘] = constant 

except at very small values of N .  Now the S N i  are independent of each other, since they 
relate to different chains. We may deduce that the SNi are approximately constant for 
all but the smallest values of N ,  and may be denoted ( S ) .  Hence 

MN 1: N lg(S) . . . . (5) 
The average proportion of the spherical locus available to the centre of each monomer 
may thus be found from the gradient of a plot of MN against N .  Comparison of equa- 
tions (4) and (5) gives 

( S )  = 10-g. 

Direct inspection of the average proportion of the locus available to each monomer, 
in chains with freely varying bond angles at v = 0.5, verified that ( S )  was constant 
throughout the range N = 15-500. The agreement was remarkable, the average pro- 
portion of the locus available varying only by k0.015 from the value 0.851 found for 
( S )  from the slope of the MN against N plot. Corresponding results were obtained for 
other values of U. 
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It is now clear why, when using the sample enrichment technique, equation (3) 
(originally deduced for on-lattice chains) was found to be valid. The probability PN of 
failure at the Nth link, due to excluded volume restraints, is given by 

PN = l - (SN)  = 1-(S) = P ( N  > 15). 

Thus the probability that a chain of more than 15 links will survive the addition of a 
further s links is 

(1 - P)" = exp[s ln(1- P)] 
= exp[-s(P++P2++P3+ . . .)] since P e 1. 

Hence 

c,+, = Ctexp[-s (~+)P2+3P3+ ...)I, 
and we can equate the attrition constant I in equation (1) to the series P + f P 2  +3P3  + . . . . 
However it has been customary (Wall et all954, Alexandrowicz 1969) to equate II  and P, 
although Hammersley and Morton (1954) showed that equation (3) is exact only in the 
limit of large t .  Hence I derived from the ratio C,+$C, would be expected to be approxi- 
mately (1 + P / 2 )  times the value obtained from the equation I = 1 - ( S ) .  In fact the 
two methods yield identical values in the case of freely varying bond angle chains at 
U = 0.5, ie I = 0.149 from the former, and I = 1-0.851 = 0.149 from the latter. How- 
ever, as mentioned above, very short ( N  < 20) chains were used in the former method, 
because of limited computing time, and it may well be that I increases with N until 
asymptotic behaviour is attained. 

The variation of I with U ,  deduced from the mean weights of 100-link chains, is 
shown in figure 11. It will be seen that I increases approximately linearly with U, both 
for freely varying and fixed bond angles. 

h 

V 

Figure 11. Variation of attrition constant 1 with U for 100-link chains. 0, freely varying 
bond angles ; A, fixed bond angles. 
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The observation of a constant probability of violation of the excluded volume 
conditions in continuum-model chains, at sufficiently large N ,  is of fundamental im- 
portance. The validity of the attrition law (equation (3)), and the deduction therefrom 
of a constant probability of intersection, has of course long been recognized for lattice- 
model chains. However, it was not clear that constant probability of self-intersection 
of a lattice-model chain was not due to the regular lattice structure. It would now 
appear that this constant probability is a characteristic of the chains themselves. 

3.3. Dual nature of excluded volume 

In order to investigate the range over which excluded volume effects are operative, the 
proportions of the locus of the centre of each monomer, say for example, the ( N  + l)th, 
excluded by the ( N  - l)th, ( N -  2)th, etc monomers were determined. 

Samples of fifty 500-link chains were generated, one with freely varying and the 
other with fixed bond angles, at v = 0.2, 0-3, 0.4,. . . , 1.0 in the former case and U = 0.2, 
0.4, . . . , 1.0 in the latter. It was found for each chain that, once it had exceeded a length 
of approximately 50 links, the contribution to the total excluded volume from recently 
generated monomers, say up to 25 links away, whilst varying with recency of genera- 
tion, did not alter as the chain length increased. Averages were therefore taken over all 
chains in the sample, beyond the 100th link, yielding the average percentage excluded 
volume due to monomers 1, 2, 3,. . . ,49, or more links away. (Exclusions due to indi- 
vidual monomers fifty or more links away occurred so infrequently that averages were 
meaningless ; hence their lumping together.) The variation of percentage exclusion 
due to individual monomers, as a function of their recency of generation N - L ,  is 
shown in figures 12 and 13 for the two different geometries. 

Considering first the chains with freely varying bond angles, the curves of figure 12 
are readily divisible into two parts, namely a steep descent at low N -  L values followtd 
by a much slower fall-off at higher N -  L. It will be seen that the percentage contribu- 
tion to the total exclusion at higher N - L  increases as U decreases However, even at 
v = 0.2, only 0.75 % of the total exclusion is due to monomers fifty or more links away. 
It should also be noted that, if a particular monomer contributes to the partial exclusion 
of a site fifty or more links away, its contribution is independent of U ,  fluctuating about 
a mean of 0.6%. In order to attempt to determine the asymptotic behaviour of the 
percentage contributions at large N - L, chains of 1000 links were built. If the average 
contribution from each atom has reached, or is still approaching, some nonzero 
asymptotic value, then the percentage exclusion due to monomers fifty or more links 
away should be greater in 1000-link chains than in the 500-link chains to which figure 12 
refers. However, when the chains were analysed in segments of 200 links it was found 
that, apart from random fluctuations, no consistent trends or differences were discern- 
ible, even though there are 750 to 950 monomers 50 or more links away in the last 
segments ( N  = 800-1000) compared with only 50 to 150 in the first segment ( N  = 1-200). 
This result must not, however, be interpreted to mean that the contribution to the total 
excluded volume is zero from monomers more than 200 links away, since exclusions 
were found due to monomers distant as much as 843 links. A possible interpretation 
is that contributions to the total excluded volume from very distant monomers occur 
at random, ie independent of N - L but that the total contribution is constant. Certainly 
any increase in total excluded volume with increasing chain length must be very slow. 

As U increases from 0.2 to 0.6 in chains with fixed bond angles, a slight increase in 
the contributions from monomers four and five links distant occurs, and this tendency 
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is seen in figure 13 to persist up to U = 1-0. The behaviour of chains with fixed bond 
angles is similar to that of freely varying bond angle chains in two aspects, namely: 
(i) the percentage contributions to the excluded volume decrease rapidly with increasing 
N -  L at low N - L ;  (ii) the percentage contribution to exclusion from individual 
monomers ten or more links away is independent of U ,  fluctuating about a mean of 
0.9% (cf 0.6% from individual monomers fifty or more links away, in the freely varying 
case) The two types of chains differ in that, while the percentage contribution in the 
freely varying case decreases with increasing U over the N - L  range 5-50, the curves 
for varying v coincide in the fixed case for N - L in the range 10-50. 

It will now be clear that there are two main contributions to the total excluded 
volume, namely a dominant ‘short-range’ effect dependent on both chain-model and U, 
and a ‘long-range’ effect dependent only very slightly (if at all) on chain-model and U. It 
seem an obvious step to associate the short-range effect with the so called intrinsic 
excluded volume (IEV) suggested by Windwer (1965), and the long-range effect with his 
extrinsic excluded volume (EEV). The IEV is the hard core excluded by the monomer 
units themselves, ie in the present calculations it is related to the volume of the indi- 
vidual spheres representing the monomers. The EEV comes into play when the chain 
coils in such a way as to exclude a volume which is much greater than the sum of the 
volumes of the individual monomers constituting the coil. However, while a correlation 
between IEV and excluded volume ratio U is readily justified, it is not immediately obvious 
why EEV should be nearly independent of U .  
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4. End-to-end length distribution function 

A complete specification of the configurational properties of polymer chains includes 
the distribution of these properties about their mean values as well as the mean values 
themselves. Consequently the distribution of the end-to-end distance R was investigated. 

Averages of four higher-order moments of R, namely ( R i ) ,  (R:), (R:), and 
( R i ) ,  and also ( R , ) ,  were obtained from two sets of one thousand 100-link chains, 
with freely varying and fixed bond angles respectively, using the inversely restricted 
sampling technique. 

Defining reduced moments 6,(p,  s) by 

values of 6,(2, l), 
values 6,@, s) were obtained by fitting the 6,@, s) to the equation 

2), 6,(6,2), 6,(6,3), 6,(8,2) and 6,(8,4) were calculated. Limiting 

and then equating Sa@, s) to a@, s). The low-order equation (6) was chosen following 
Mazur and McCrackin (1968), who reported that this equation yielded 'better' extra- 
polations than others involving higher-order polynomials in (l/N). We present in 
figure 14 the variation of 6,(2,1) with N for U = 0.4, in order to show how the reduced 
moments oscillate within relatively small limits of their asymptotic values around 
N = 100. The differences 6,- 6,- decrease rapidly with increasing N ,  being of order 

for the higher- 
order moments which are subject to greater error. 

for 442, l), &(4,2) and 6,(6, 3) at N = 100, and of order 

t 
20 40 60 00 loo 

l ~ O 0 L " " " "  ' '  

N 

Figure 14. Variation of 642, 1) with N for freely varying bond angle chains at L' = 0.4. 

Table 4 shows the limiting 6,(p,s) values obtained for a range of U-values, along 
with the corresponding values for the Gaussian distribution function W(R) of the 
end-to-end distance R, namely 

lim W(R) = 4nR2 
,+a, 

(7) 

each step being of length b. The latter represents the zero excluded volume case. It 
will be seen that, in general, the 6, values decrease steadily with increasing U. 
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Table 4. Variation of reduced moments d,(p, s) with U. 

Freely varying 
bond angles 

0.2 1.172 1.636 
0.3 1.153 1.561 
0.4 1.147 1.523 
0.5 1.136 1.477 
0.6 1.128 1448 
0.7 1.128 1.446 
0.8 1.124 1.429 
0.9 1.125 1.434 
1.0 1.123 1.417 

2.47 1 
2.291 
2.151 
2.024 
1.972 
1.953 
1.909 
1.913 
1.867 

3.660 3.866 10.232 
3.263 3.527 8.48 1 
3.012 3.126 7.160 
2.772 2.836 6.155 
2.652 2.789 5.797 
2.628 24‘05 5.622 
2.544 2.597 5.264 
2.561 2.591 5.311 
2.474 2.503 4991 

Fixed 
bond angles 

0.2 1.162 1.576 2.270 3.275 3.342 8.241 
0.4 1.146 1.525 2.159 3.026 3.138 7.227 
0.6 1.132 1.463 1.997 2.709 2.779 5.903 
0.8 1.119 1.41 1 1.860 2.455 2.489 4.925 
1.0 1.110 1.378 1.792 2.318 2.390 4.505 

Gaussian distribution (zero excluded volume) 

0.0 1.178 1.667 2.577 3.889 4.200 11.667 

We now propose a radial distribution function of the general form (Mazur 1965a, b) 

where B, I, and t are constants, and t~ is a scaling factor. 
Hence 

where T(x) is the gamma function defined by 

T(x) = hX-’ exp(- h) dh (x > 0). Iom 
The most suitable pairs of parameters I and t in the distribution function (equation 

(8)) were found by comparing the six ‘experimental’ moment values 6,(p, s) of table 4 
with those predicted from equation (9). A computer program was written in which 
t was varied over the range 2.0-4.0 (t = 2.0 for a Gaussian distribution) ; for each value 
o f t ,  and for each moment, 1 was chosen so as to minimize lbmca,c-6mcxpl. The values 
were then plotted against t for each of the six moments, and the ‘intersection’ of the six 
curves was chosen as the best (I, t )  combination. The resulting data for all values of v 
are given in table 5. 
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Table 5. Parameters 1 and t of the distribution function W(R).  

L' Freely varying bond angles Fixed bond angles 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

1 

1.90 
2.14 
1.88 
1.95 
2.11 
2.04 
1.98 
1.93 
1.94 

t 

2.16 
2.27 
2.74 
2.96 
3.00 
3.12 
3.33 
3.38 
3.52 

1 t 

1.77 2.57 

240  2.60 

1.98 3.03 

2.04 346 

2.18 3.62 

Mean = 1.99 Mean = 1.99 

It will be seen that 1 fluctuates, in an apparently random fashion, around a mean 
value of approximately 2.0, but t increases steadily with increasing v ,  for both geometries. 
t is, of course, 2.0 for zero excluded volume. We therefore suggest that a distribution 
function of the form proposed by Mazur (1965a, b), namely 

W ( R )  = BR2 exp[ - ( :)r], 
is more appropriate than that of Domb et a1 (1965) given by 

since there is no indication that I = t. It should also be noted here that the relation- 
ship t = 2/(2-7) proposed by Fisher (1966) does not hold, the discrepancy increasing 
with U. 

The distribution function indicates the range of end-to-end lengths which can 
occur among the many possible chain configurations for specified values of U and N .  
It is also of interest to known how the individual monomers are spatially distributed 
within a given chain. In this context the storage table described by Fleming (1967) in 
connection with checking for violation of the excluded volume conditions is of value. 
This table shows the number of monomers situated in shells between 0 and 1, 1 and 2, 
2 and 3, etc units of length from the origin, and their precise locations within those 
shells. Hence if a cumulative total of the number of monomers in each annulus is 
obtained for a large number of chains, a reliable indication of the average spatial distribu- 
tion of the monomers within the chains can be derived. Unfortunately the method of 
inversely restricted sampling does not lend itself to such a procedure, since the different 
statistical weights occurring along the chains render the averaging procedure too 
complex. However, the results obtained using the sample enrichment technique can 
be treated in the manner described, and figure 15 shows three histograms of the number 
of monomers in a given shell against the position of that shell, for freely varying bond 
angles at v = 0.5. The corresponding ( R )  values are also indicated. These histograms 
show the density of monomers as a function of distance from the origin, independent 
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of direction. The distribution would be expected to be spherically symmetric (Domb 
et al1965), and a rough check that Zx, Zy, and Zz were each zero, when summed over all 
504 links in a two thousand nine hundred chain sample, confirmed this expectation. 

‘2 
Shel l  number 

Figure IS. Average distribution of monomers within (a) 72-link ( ( R )  = 11.47), (b) 288-link 
((R) = 22.94) and (c) 504-link ( ( R )  = 30.35), freely varying bond angle chains at U = 0.5, 
sample containing two thousand nine hundred chains. 

5. Discussion 

The results presented in this paper support the conclusion of Windwer (1965), Gallacher 
and Windwer (1966), and Mark and Windwer (1967) that real finite polymer-chain 
systems must be considered individually in order to obtain the dependence of their 
configurational properties on the number of monomers in the chain. This conclusion 
is opposed to the widely held view, eg Domb (1963, 1969), Edwards (1965) that the 
effects of excluded volume on the dimensions of finite polymer chains are completely 
specified by the dimensionality of the chains. Thus, according to Domb, ( R i )  a N6’5 
in three dimensions, and ( R i )  ot N 3 l 2  in two dimensions. Furthermore, it is claimed 
(Domb 1969, 1970, Martin 1970) that asymptotic behaviour is attained, for three- 
dimensional on-lattice chains, for N as low as 15 ; although some of the corresponding 
results in two dimensions (eg Wall and Erpenbeck 1959) are erratic, since sample 
attrition is more serious in two dimensions, little deviation from the N3/’ law is ex- 
pected for N > 500. Edwards (1965), using a self-consistent field technique similar to 
that introduced by Hartree for atomic wavefunctions, also obtained the N 6 / 5  law in 
three dimensions, and claimed that such behaviour would be obtained if N >> L6/Vz ,  
where Lis the bond length and Vthe excluded volume. On a lattice model L corresponds 
roughly to the lattice spacing and Vto the unit cell volume. Thus asymptotic behaviour 
would be expected around N = 10 for most three-dimensional lattices. On the con- 
tinuum model, if we take L as the separation between the centres of consecutive spheres, 
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and V as four times the volume of each sphere, then asymptotic behaviour would be 
expected if N >> 3750 at U = 0.2, N >> 16 at U = 0.5, and N >> 1 at U = 1.0. 

The present results suggest that, for continuum model chains up to N = 500, the 
exponents y and y' are not determined uniquely by dimensionality. Rather they tend to 
increase monotonically with U, as also does the parameter t in the end-to-end distribu- 
tion function W(R) of equation (8). One must consider the possibility that, as N + 00, y 
and y f  will attain a value independent of N ,  and that t will also become independent of U. 
Monte Carlo calculations cannot, of course, be extended to the limit N -+ CO, and 
therefore such asymptotic behaviour must still be regarded as a theoretical possibility. 
However, chains of infinite length have no practical interest; the present work strongly 
suggests that, for chains of intermediate length, say up to N = 500, which are of practical 
interest, y' and t are each dependent on U. If y, y' and t become independent of U in 
longer chains, then the approach to such behaviour must be very slow. It should also 
be stated that a monotonic increase in these three parameters with increasing U seems 
intuitively more acceptable than a discontinuity, eg in y and y' between unity and g,  
when excluded volume, no matter how small, is taken into account. 

The discrepancy between the results for on-lattice and continuum-model chains 
can perhaps be explained in two ways. Either a rigorous analytical treatment of the 
problem would show that all chains of the same dimensionality, whether on- or off- 
lattice, have the same asymptotic configurational behaviour, and the continuum-model 
chains of the present work approach that limit very slowly, or one or more of the 
approximations in the analytical treatments published to date implies a fundamental 
similarity to lattice-constrained behaviour. As stated immediately above, the first 
explanation cannot be completely discounted, but, in view of the apparent attainment 
of asymptotic behaviour not later than N = 200, it seems unlikely. With reference to 
the second explanation it may be that approximate analytical treatments (eg Edwards 
1965, Reiss 1967), which regard a polymer chain as consisting of a number of segment 
clouds, are inadequate because the envisaged repulsive interaction between neighbour- 
ing segment clouds does not take into account the covalent binding between consecutive 
monomers of the chain, ie orientation restrictions arising from fixed bond angles and 
bond lengths are ignored. Furthermore, the possibility of chain coiling so as  to exclude 
a volume much larger than the sum of the volumes of the individual monomers of the 
coil, ie the EEV effect of Windwer (1965), appears to be ignored. Thus the only long-range 
effect of excluded volume operative is that associated with IEV, ie the hard cores of the 
individual monomers. It is easy to  see how the long-range effect of IEV could be inde- 
pendent of U ; a difference of, say, 0.25 units in the radius of a monomer situated near the 
end of a given chain is unlikely to be significant in relation to the probability of volume 
interference of that monomer with another near the chain origin. Supporting evidence 
was presented in 0 3, where the amount of volume interference between monomers 
separated by a large number of intermediate links was shown to be independent of U. 
Thus it seems reasonable to suppose that, if EEV effects are absent, the total long-range 
excluded volume effect will be independent of U. 

While it may be true that the analytical calculations do  not allow for EEV effects 
due to bonding, these effects would certainly be expected to occur in lattice-constrained 
chains. As far as IEV effects are concerned, it is helpful to consider the chain generation 
process as a Markov process of order r .  We can identify two cases: 

(i) r >> N .  Each monomer added to the chain is then influenced by the presence of 
each previously added monomer, and we would certainly expect the resulting increase 
in y to be lattice-dependent. 
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(ii) r << N .  Each monomer interacts only with those monomers distant not more 
than r links along the chain, and consequently the configurational properties of the 
chain do  not differ significantly from those of a completely random walk (Domb 1969). 
In particular, (Ri )  acquires an expansion factor independent of N ,  and end-correction 
terms of order less than N ,  so that (R i )  - C,N. What might be considered as the 
long-range effects of IEV are therefore absent, and any increase in y must be due to EEV 
effects. These were found to be almost independent of U in continuum-model chains. 
Hence if it is correct to identify excluded volume with unit cell volume, we might expect 
a lattice-independent increase in y for the lattice model chains. 

The values of r for chain generation on lattices are generally agreed to be small. 
Thus if the corresponding values for real polymer chains are much larger, lattice models 
of such chains could be unsatisfactory. 

6. Conclusions 

The following conclusions may be drawn from the results presented in this paper : 
(i) For chains of less than 100 links, the exponents y and y‘ in the equations 

(Ri )  = UN? and ( S i )  = U”?’ tend to increase monotonically from unity as the sphere 
diameter v increases from zero to unity. The coefficients also vary with v and the chain 
geometry. 

(ii) The expansion factor a2(z) does not consistently follow any of the published 
two-parameter curves. 

(iii) The ratio (Sfoo)/(Rfo,,) decreases slowly from 0.167 at zero excluded volume 
to about 0.157 for N 2 0.6, these values being very close to those published for on- 
lattice chains. 

(iv) The distribution function W(R) of the probability that the end-to-end length 
of a chain will be R can be expressed as W(R) dR = KRZ exp[ -(R/a)‘] dR where K 
and a are constants, the latter being directly proportional to the mean square end-to- 
end length of the chain, and t is a parameter which increases monotonically with 
increasing excluded volume from a value of 2.0 at zero excluded volume. 
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